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ANALYSIS AND FINITE ELEMENT APPROXIMATION 
OF OPTIMAL CONTROL PROBLEMS 

FOR THE STATIONARY NAVIER-STOKES EQUATIONS 
WITH DISTRIBUTED AND NEUMANN CONTROLS 

M. D. GUNZBURGER, L. HOU, AND T. P. SVOBODNY 

ABSTRACT. We examine certain analytic and numerical aspects of optimal con- 
trol problems for the stationary Navier-Stokes equations. The controls consid- 
ered may be of either the distributed or Neumann type; the functionals mini- 
mized are either the viscous dissipation or the L4_distance of candidate flows 
to some desired flow. We show the existence of optimal solutions and justify 
the use of Lagrange multiplier techniques to derive a system of partial differ- 
ential equations from which optimal solutions may be deduced. We study the 
regularity of solutions of this system. Then, we consider the approximation, by 
finite element methods, of solutions of the optimality system and derive optimal 
error estimates. 

1. INTRODUCTION 

The optimization problem we study is to seek a state pair (u, p) , i.e., velocity 
and pressure fields, and controls gb and gd such that a functional of u, 9b 
and gd is minimized subject to the constraint that the Navier-Stokes equations 
are satisfied. In other words, the state and controls are required to satisfy 

(1.1) -vdiv((gradu)+(gradu)T )+u.gradu+gradp=f+gd innQ, 

(1.2) divu=O inQ, 

and 

(1.3) -pn + v (gradu + grad u T 
).n+vau=h+gb on]F, 

where Q denotes a bounded domain in iR d, d = 2 or 3, with a boundary F, 
and v is the kinematic viscosity. In (1.1 )-(1.3), we have absorbed the constant 
density into the pressure and the body forces. If the variables in (1.1 )-( 1.3) are 
nondimensionalized, then v is simply the inverse of the Reynolds number Re. 
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When finite element approximations are considered, we will assume that Q is 
a convex polyhedral domain; otherwise, we will assume that F is either convex 
or is of class C l . In ( 1.1)-(l.3), u and p denote the velocity and pressure 
fields, respectively, f a given body force, h a given stress type force, a > 0 a 
given coefficient, gd a distributed control, and gb a boundary control. 

A few words about the boundary condition (1.3) are in order. This boundary 
condition relates the stress vector and the velocity on the boundary. If a = 0, 
then (1.3) is simply the stress vector on the boundary; with a > 0, (1.3) can 
be also used in a variety of applications, e.g., compliant surfaces. Also, see [13, 
16] for a discussion of the applicability of the boundary condition (1.3) with 
a > 0. In any case, we do not specify the velocity field on the boundary. Ve- 
locity boundary conditions are sufficiently different, from both the analytic and 
algorithmic points of view, to warrant separate treatment (see [8, 9]). In prac- 
tical situations it is likely that (1.3) is specified on only part of the boundary, 
with the velocity specified on other parts. Or, on some boundary segment, some 
component(s) of (1.3) may even be specified along with the complementary com- 
ponent(s) of the velocity. By combining the results of this paper with those of 
[8, 9], all of these alternative situations can, in principle, be handled. However, 
for some combinations of velocity and stress boundary conditions, some care 
must be exercised in defining finite element approximations (see [16]). In any 
case, the exposition is greatly simplified if we stick to the boundary condition 
(1.3), and treat the case of velocity boundary conditions separately. 

The two functionals that we consider are given by 

(1.4) f(U gI g)= Z I f (u1 u0j)4 dQ+ . 1fg I2 dF+ 2 fIgdI2 dQ 
1=1 

and 

X (U I 9b I 9d ) = 2 X (grad u) + (grad U)Tj|2 dQ - Jof 
- u dK2 

(1.5)2 
+ 2 fau udf + 2 f Ig12 dF+ 2 9f 12gd dQ. 

The first of these effectively measures the difference between the velocity field 
u and a prescribed field u0, while the second measures the drag due to viscos- 
ity. The inclusion in (1.5) of the boundary integral involving the coefficient a 
accounts for the force exerted on the fluid due to the absorption term vau ap- 
pearing in (1.3). For a discussion of the relation between (1.5) and the viscous 
drag, see [13]. The appearance of the controls gb and gd in (1.4) and (1.5) is 
necessary, since we will not impose any a priori constraints on the size of these 
controls. Problems for which the controls are constrained to belong to closed, 
convex, bounded sets of the underlying control spaces, including cases in which 
the control may be omitted from the functional to be minimized, are treated in 
[8]. 

The plan of the paper is as follows. In the remainder of this section, we 
introduce the notation that will be used throughout the paper. Then, in ?2, we 
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give a precise statement of the optimization problem for the functional (1.4) 
and prove that an optimal solution exists. In ?3, we prove the existence of 
Lagrange multipliers and then use the method of Lagrange multipliers to derive 
an optimality system. In ?4, we consider finite element approximations and 
derive error estimates. In ?5, we consider all of these issues in connection 
with four variations of the problem treated in ??2-4. These variations are: (1) 
optimizing the drag functional (1.5) instead of (1.4); (2) the case of having 
a distributed control acting in concert with specified boundary conditions; (3) 
cases wherein distributed controls act on only part of the flow domain; and 
(4) cases wherein Neumann controls act on only part of the boundary. We 
note that some of the material of ??2 and 3.1 may be found, in the context of 
distributed controls with homogeneous velocity boundary conditions, in [12]. 
Also, a preliminary announcement of some of the results of this paper may be 
found in [10]. 

Throughout, C will denote a positive constant whose meaning and value 
changes with context. Also, Hs(k), s E IR, denotes the standard Sobolev 
space of order s with respect to the set , where 0 is either the flow domain 
Q or its boundary F. Of course, H (0) = L 2(). Norms of functions 
belonging to Hs(Q) and Hs(F) are denoted by LIs and IIs, respectively. 
Corresponding Sobolev spaces of vector-valued functions will be denoted by 
Hs(O); e.g., H (Q) = [H1 (Q)]d . Norms for spaces of vector-valued functions 
will be denoted by the same notation as that used for their scalar counterparts. 
For example, 

d d 

|vHLr(2) = Lr() and IvH| = E 

j=1 j=1 

where v;, j = 1, ..., d, denote the components of v. We define, for (pq) 

and (u -v) EL (Q), 

(p5 q) fpqdQ and (u, v)=f u vdQ 

andfor (pq) and (u v)eL1(F) 

(P5 q)r= pq dF and (u, v)r=j u vdF. 

Thus, the inner products in L 2(Q) and L 2(Q) are both denoted by (., ) and 
those in L 2(F) and L 2(F) by (., .)r. If X denotes a Banach space, X* will 
denote its dual. Also, since in our context one of L2 () or L2(F) will play the 
role of the pivot space between X and X*, (., *) or (., )r (as the case may 
be) also denotes the duality pairing of X and X* . For details concerning these 
matters, see [1, 2, or 6]. 

We will use the two bilinear forms 

a(u, v) = - ((gradu) + (graduY%:((gradv) + (gradv)T)dQ Vu, v E H (Q) 
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and 
b(v, q)=- qdivvdQ VvEH'(Q)andVqEL2(Q) 

and the trilinear form 

c(uv,w)=j ugradvwdaQ Vu,v,wEH 1(). 

These forms are continuous in the sense that there exists a constant C > 0 such 
that 

(1.6) Ia(u, v)I < CIjuII1IlvII1 Vu, vE H (Q), 

(1.7) Jb(v, q)j < Cjjvjj1jjqjj0 VV E H1(Q) and q E L2(Q) 

and 

(1.8) jc(u, v, w)j < CjjujjljjVjjjjwjjj1 Vu, v, w E H1(). 

Moreover, we have that 

(1.9) sup E v 
q)> CjIqII0 Vq eL2(Q). 

0,6vEHl (Q) 11V1 

For details concerning these forms, one may consult [6, 7, or 14]. 
One more useful property of the bilinear form a(., *) is given as follows. 

Suppose 1F c F, such that F1 has positive measure. Then, if a > 0 on IF, 
we have that 

(1.10) Ch 1vl 2 < a(v, v) + (av, v)r < CIIvI2I VV E H'(Q). 

Thus, a(v, v) + (aOV, v) defines an equivalent norm on H1 (Q) . The right 
inequality of (1.10) follows easily from (1.6) and the properties of the inner 
product (., )r ; the left inequality follows from the Korn inequalities. 

2. THE OPTIMIZATION PROBLEM AND THE EXISTENCE OF OPTIMAL SOLUTIONS 

We begin by giving a precise statement of the first optimization problem we 
consider. Let gb E L 2() and gd E L2(Q) denote the boundary and distributed 

controls, respectively, and let u E H (Q) and p E L 2(2) denote the state, i.e., 
the velocity and pressure fields, respectively. The state and control variables are 
constrained to satisfy the Navier-Stokes equations in the weak form (see, e.g., 
[6, 7, or 14]) 

(2.1) va(u, v) + c(u, u, v) + b(vi, p) + v(au, iVr 

= (f+gd, v) +(h+gb, V)r VVErH1(Q) 

and 

(2.2) b(u, q) = 0 Vq E L2(Q), 

where f E L 2(Q), h E L 2(F), and smooth a > 0 are given functions. If a = 0, 
then here and throughout we should work with velocity test and trial functions 
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belonging to H1 (Q)/{.}, where R denotes the space of rigid body motions. 
Although all our results hold for the case a =0, for the sake of simplicity, we 
will assume that a > 0. 

The functional (1.4), using the notation introduced in ? 1, is given by 

(2.3) 4 L4(Q) +,r + IgdII1, 

where uo E L4(Q) is a given function. The admissibility set /ad is defined by 

g/ad={(U fI gb I d) E H I(Q) x L 2(]F) x L 2(Q2) :'F(U, gb I d) < x0 

(2.4) and there exists a p E L 2(2) 

such that (2.1) and (2.2) are satisfied}. 

Then, (u, gb gd) E d is called an optimal solution if there exists e > 0 such 
that 

(2.5) U 1 gb S gd) 
< 
? (u, gb 

I 
gd) V(u, 9b 

gd) E /d satisfying 
I1U - 'll1 

+ 
11gb 

- 
gb"O,I 

+ 
I1gd - gdI10 

We first show that an optimal solution exists. 

Theorem 2.1. There exists a (u I gd) E Wad such that (2.3) is minimized. 

Proof. We first claim that Zad is not empty. Let id = 0 and then let (ui,) 
be a solution of (I.l)-(1.2) with u = 0 on F. Then, since f E L2 (2), it is well 
known [6 or 14] that (u, p) E H (Q) x H' (Q) and Il12+Illl1 < ClIfIlo0. Now, 
let 

gb -,fpn + ((gradu) + (gradu ) ) n + ai]r - h. 

Clearly, if h E L 2(F), then gb E L2(F) and 

llgbllQ 1 ? C(FlhIIo r + IlPlr'Ilo,r + I1uflrl11,r) 

so that IIgbIIo,F < C(IIf I0 + IIhIIo,I). Also, one easily finds that (, , p0, gb) 
satisfies (2.1)-(2.2). Moreover, we have 

f(ii, 0, gb) < C(IIUIIL4(Q) + IIUoIIL4(a) +IgbII0,r) < xc. 

Thus, (u5 P 5 05idE gad 
Now, let {u(n), gbn), g7n)} be a sequence in gad such that 

nlim oFU(n) 5 g(n) 5 ) () inf (U 5 9b I gd) 

Then, by (2.3) and (2.4), (u(n), g n), gd n)) is uniformly bounded in L4(Q) x 
2 2~~~~~~~~~~ L 2(F) x L 2(Q), and for some p(n) E L2(Q) we have that 

2.6 va(u(n), v) + b(v, p (n)) + v(au(n), V)r 
=(f+gd ,v) +(h+gb (n) (n) 1 
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and 

(2.7) b(U(n), q) = 0 Vq e2(Q) 

Now set v = u(n) in (2.6). Note that 

Ic(u(n) u(n) U(n) )l= 2 u(n) . ((grad u(n)) + (grad u(n) ) T) U(n) dQ 

(2.8) < 2ll~graC (n))+g d(n))Tl l(n)l2 < 
C 

II(gradu(n)) + (gradu (n))T +IIu IIC L(n) 1 
2 

V (n)(n) T 12 C (n) 4 

so that using (2.6) and (2.7), and the facts that II U IIL4(Q) < CI IU(n) I 1, I(gd, U(n)) I 
< jjgdn) o IU(n) 1 , and I (gb , U(n))r4I < j lgIn) jo r'IU(n) Ilor, we have that 

' 
II(gradu(n)) + (gradu(n) T 2 

+ v(au2(n) u(n) 
(n) 3 (n) (n) 

< C(IIU (IILn(Q) + 11gb IIor + IIgd 110 + I1hI1o,r + IIfIIo)IIU ()Ill. 
L 42)n)(n n). rlybonedi 

Then, using (1.10) and the fact that (u , gn ,n) gn)) is uniformly bounded in 
L 4(Q) x L 2(r) x L 2(Q), we have that 

(2.9) HU(n )11 ? 4() + I1gb I)I 0r + IIgd )IIo + IIhIIor + IIfIIo) < K 

for some K independent of n. Using (1.9) and (2.6), as well as this last 
result, one may obtain a similar estimate for I Ip(n)10. We may then extract 
subsequences such that 

(n) 2 

gd gd in L (Q), 
(n) 2d inLl), 

p(n) - p in LH(Q), 

P(n) 2 in L2 

(n) 2(n) 
u j-uj inL(F 

U g 2(,,)~ 2 2 (2 for some (u, g gd) e 1(Qd x ) xL x L (Q) and p^ E (Q). The last two 

convergence results above follow from the compact imbeddings H1 (Q) c L 2(Q) 
and H1/2(F) c L2(F) . We may then pass to the limit in (2.6)-(2.7) to determine 
that (u Pgb gd) satisfies (2.1)-(2.2). Indeed, the only troublesome term, 
when one passes to the limit, is the nonlinearity c(., ., .). However, note that 

c(u(n) (n) (u ) n 
vd= u gd dQ Vv E CO" (Q). 
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Then, since u(n) ii in L2 (Q) and u (n)jr' -_ 01rI in L2(V), we have that 

lim c(u(n) u(n) v) = f(6i n)fi vd]F - u i gradv *i dQ 

= c(fi u, f5v) VV E Coc(Q). 

Then, since C' ((Q) is dense in H1(Q), we also have that 

lim C(U(n), U(n) v)=C(1,fiv) VVEH 1(Q). 
n--+00 

Finally, by the weak lower semicontinuity of F(.,*, *), we conclude that 
(6, 5 bd) is an optimal solution, i.e., 

(U. b I d) Egad 

Remark 1. The use of the L4(Q)-norm of (u - u0) in the functional (1.5), or 
equivalently (2.3), can now be explained. Note that as a result of this choice 
of norm we have that {u (n)} is a bounded sequence in L 4(Q), a fact that was 
used to derive (2.9), i.e., that {u}(n) is actually bounded in H1(Q). The crucial 
step is included in the inequalities of (2.8). If, for example, we had used, in 
the functional (1.4), the L 2(Q)-norm of (u - u0) instead, we would only know 
that {u}(n) is a bounded sequence in L2(Q) and the estimates in (2.8) would 
not hold. 

Remark 2. Because the optimal control ib EL2(F) and id E L2(Q) , we may de- 
duce, using regularity results for the Navier-Stokes equations, that ui E H3/2(Q) 

3. THE EXISTENCE OF LAGRANGE MULTIPLIERS AND AN OPTIMALITY SYSTEM 

3.1. Existence of Lagrange multipliers. We wish to use the method of Lagrange 
multipliers to turn the constrained optimization problem (2.5) into an uncon- 
strained one. We first show that suitable Lagrange multipliers exist. 

Let B1 =H1(Q) x L 2(Q) x L 2(Q) x L2(F) and B2 = (Hl(Q))* x L2(Q), and 
let the nonlinear mapping M: B1 -* B2 denote the (generalized) constraint 
equations, i.e., M(u, P, gd ' gb) = (f, 5() for (u, P, gd' gb) E B1 and (f, 5o) E 
B2 if and only if 

va(u, v)+c(u, u, v)+b(v, p)+v(au, V)r-(gd, v)-(gb V)r = (f, v) Vv E 1 (Q) 

and 
b(u,q)=(p,q) VqEL (Q). 

Theorem 3.1. Let (U 5 P. gd i gb) e H1 (Q) x L2(Q) x L2(Q) x L2(F) denote an 

optimal solution in the sense of (2.5). Then there exists a nonzero Lagrange 
multiplier (?, a) E H1 (Q) x L2(Q) satisfying the Euler equations 

(f g id gb) * (w, r, Sd, Sb) 

(3.1) + (M'(u, 5A p, Ad ' b)(W r, S d Sb) 41 5 ))= 

V(w, r, S d Sb) E H (Q) x L 2 (Q) x L 2 (Q) x L 2(r) , 
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where (,*) denotes the duality pairing between H (Q) x L 2(Q) and (H (Q))* x 
L 2(Q). 
Proof. The operator M'(,p ,i gd A gb) e Sf(B1; B2) is defined as follows: 

M A(ui, A gd' gb) (w, r, Sd' Sb) = (f, 7) 

for (w, r, Sd, Sb) e B1 and (f, q) e B2, if and only if 

(3.2) va(w, v) + c(w, u, v) + c(i, w, v) + b(v, r) 

+ v(aw, V)- (Sd, V)-(Sb, V)r= (f, v) Vv E H (Q) 
and 

(3.3) b(w, q) = (?, q) Vq E L (Q). 

The operator M'(ui, P.? gd gb) from B1 into B2 is onto. To see this, first note 
that ( 1.6), (1.7), (1.9), and (1. 10) imply that there exists (w, r) E H (Q) x L 2(Q) 
such that 

va(w, v) + v(aww, v)r + b(v, r) + c(ui, w , v) - 2((u n)w , v)r 

=(f, v) Vv E H (Q) 
and 

(3.5) b(w, q) = (?, q) Vq E L (Q). 

This follows using well-known techniques for proving the existence of solu- 
tions of the Navier-Stokes equations [14], once one notes that c(ui, w, w) - 

((i * n)w, w)r = 0 for all w E H1(Q) . Then, there is no difficulty in finding 
sb E L2(I) and sd E L 2(Q) such that 

(3.6) (sd' v) + (sb' v)r = c(w, u, v) + 2((ii n)w, v)r VV E H 1(Q). 

Indeed, we may set sb = 2 (ui. n)w and sd = w * grad u, so that, since w E H1 (Q) 
and ui E H312(Q) (see Remark 2 at the end of ?2), we have that sd E L2 (Q) 
s E L2(F) and (3.6) is satisfied. 

Combining (3.4)-(3.6) then yields (3.2)-(3.3), showing that, for any (f, q) E 
B2 there exists (w, r, 5sd Sb) in B1 satisfying (3.2)-(3.3). 

Now consider the nonlinear operator N: B1 R x B2 defined by 

N(U, P 5 d 5 b) = 
(( 5 PU 5d ' d 5 ) 

9bU.g) g 

The operator N'(fi, p fgdA gb) from B1 into JR x B2 may be defined as fol- 
lows: N'(i P. i5d Adb) * (w, r, Sd, sb) = (0ft ,) for (w, r, sd, Sb) E Bl and 
(,B, f, 0) e JR x B2, if and only if 

d 

(3.7) (( - Uo)j] , (w)*) + (Ad Sd) + (gb 5 sb)r= ft , 
j=1 
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(3.8) va(w, v) + c(w, , v) + c(i, w, v) + b(v, r) 1 

+ v (au, V)r-(Sd, V)-(Sb, V)rF= (f, v) VvEH (Q) 

and 

(3.9) b(w, q) = (?, q) Vq E L (Q). 
This operator has a closed range but is not onto. 'The fact that it has a closed 
range can be shown as follows. First note that M'(f P.? gd i gb) is onto B2 , 
and therefore has a closed range. Also, the continuity of the various bilin- 
ear and trilinear forms, i.e., (1.6)-(1.8), and of the inner products appear- 
ing in the definiton of M'(f P.? gd A gb) implies that this operator belongs to 
2(B1, B2), and therefore the kernel of M'(fi, P. g A gb) is a closed subspace. 
Now, f' (f gd, gb) acting on the kernel of M'(ui, P gd A gb) is either identi- 
cally zero or onto JR. This follows from the obvious result that whenever f 
is a linear functional on a Banach space X, then either f _ 0 or the range 
of f is R. Thus, we have shown that f'(ft g5, gb) acting on the kernel of 
M'(u, P gd 5A gA) has a closed range. Now, recall the following well-known re- 
sult. Let X, Y, Z be Banach spaces and A: X -* Y and B: X -* Z linear 
continuous operators. Then, if the range of A is closed in Y and the subspace 
Bker(A) is closed in Z and further, if Cx = (Ax, Bx), C: X -* Y x Z. 
then the range of C is closed in Y x Z. Thus, in our context, the operator 
N'(iu, P. gdA gb) has a closed range in B2 . 

The operator N'(ut, P f gd 5 A) is not onto because if it were, by the Implicit 
Function Theorem, we would have (u, gd ' gb) E Wad such that Iu uI1L4(2) + 

H Igd gdHQ lo +H| Igb gbH~f? r and f(u, d ) <f(Ug S g) contradicting 
the hypothesis that (u, gdA gb) is an optimal solution. However, the Hahn- 
Banach Theorem implies that there exists a nonzero element of (JR x B2)* = 

JR x H (Q) x L 2(Q) that annihilates the range of N'(ui, P gd ' gb), i.e., there 
exists (,Ba) e R x H(Q) x L 2(Q) such that 

(3.10) 053 i5 0)5 (fl5' a= )) =0O 

V(fl, f, 0) in the range of N (ui, P gd ' gb)A 

where (., ) denotes the duality pairing between JR x B2 and its dual (JR x B2)* 
Note that f, :$ 0, since otherwise we would have that ((f, 5 ), (s , a)) = 0 for all 
(f, ) E B2, so that (s , a) _ 0, contradicting the fact that (flB, a a) $A 0. We 
may, without any loss of generality, set f, = -1 . Clearly, using the definition 
of the operator N'(u, P. gd i gb), (3.1) and (3.10) are equivalent. E 

Using (3.7)-(3.9) and setting ,B = -1 , we may rewrite (3.10) in the form 

- ((u-u0)3, w) - 
(id ' Sd) -(gb' Sb)r + va(w, s) 

+ c(w, ut, 5) + c(ui, w, ,) + b( , r) + v (aw, 4)r - (Sd ) - (Sb 5 )r- 

+b(w,a)=0 V(wrsd, Sb) EH (Q) x L (Q) x L (Q) x L2(r), 
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where v', for any vector v, denotes componentwise exponentiation, i.e., 
vr = (Vr, ..., vr)T. Upon separating the above equations, we have that 

(3.11) va(w, {) + c(w, fi, {) + c(ui, w, {) + v(aw, r + b(w, a) 

(1 (( -u)3 , w) Vw E H' (Q), 

(3.12) b(, r) =O lr EL 2(Q), 

(3.13) (d, sd)=-(sd, ) VSd EEL 2(Q) 

and 

(3.14) ( Sb)r =-(Sb {)r Vsb e L 2(). 

Since the optimal solution (u, P. gid gb) satisfies the constraint (2.1)-(2.2), we 
see necessary conditions for an optimum are that (2.1)-(2.2) and (3.11)-(3.14) 
are satisfied. This system of equations will be called the optimality system. 

Remark. The existence of Lagrange multipliers could have been proven, and 
(different) optimality systems could have been derived, using weaker norms 
for the controls in the functional (1.4), or equivalently, (2.3). For example, 
instead of the L 2(Q)-norm of gd, we could have used in (2.3) the L3/2(Q)- 
or L4/3(Q)-norms, or even the L6/5(Q)- or (Hl(Q))*-norms of gd. We did 
not use the first two norms since they complicate the relation (3.13) between 
the Lagrange multiplier ; and the optimal control d' resulting in a more 
cumbersome numerical algorithm. We did not use the last two norms because 
they result in great difficulties in the considerations of ?3.3, i.e., the derivation 
of regularity results. 

3.2. The optimality system. We have just shown that we are justified in in- 
troducing Lagrange multipliers in order to turn the constrained optimization 
problem (2.5) into an unconstrained one. For the sake of clarity and unity, we 
repeat some of the steps carried out above in the following formal procedure. 

We introduce the Lagrange multipliers 4 E H1 (Q) and a E L (Q) and define 
the product space 

V=H (Q) x L (Q) x L (F) x L (Q) xH (Q) x L (Q) 

and the Lagrangian 

A'(U ,P 5 b 9d'{ ) 

(3.15) S=(U 9b ' 9d) - [va(u , + c(u, u, ;) + b({, p) + b(u, a) 
( * ) ~~~~~~~+ v (ceF, J=r( + 9d , =) -(h + 9b 5 i=)r 

V(UP, ' a,) E V. 

We now seek the minimum of 4(up P P bgd' I, a) over V. 
Formally using standard techniques of the calculus of variations, one may de- 

rive the Euler-Lagrange equations that correspond to rendering (3.15) stationary. 
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Variations in the Lagrange multipliers ; and a recover the constraints (2.1) 
and (2.2). Variations in the state variables u and p yield 

va(w, ) +c(co, u, {) +c(u, c, ;) +b(co, a) +v(aWco, 

=((u - u0)3, w) VCO E H (Q) 

and 

(3.17) b(~,,y)=O VV/EL 2(n) 

where, again, (u - uo)3 denotes a componentwise exponentiation. Finally, vari- 
ations in the controls gb and gd yield that 

(3.18) (gd+{,w)=0 VweL2(Q) 

and 

(3.19) (gb+;,r)r =O VrEL 2(). 

Thus, the optimal solution necessarily satisfies the optimality system (2.1)-(2.2) 
and (3.16)-(3.19). Note that (3.18)-(3.19) enable us to eliminate the controls 
gb and gd from (2.1), resulting in 

va(u, v) + c(u, u, v) + b(v, p) + v(au, v)r 
= (f- , v) + (h- , v)r Vv E H(Q). 

Then the optimality system in terms of the variables u, p, s, and a is given 
by (2.2), (3.16), (3.17), and (3.20). We will approximate solutions of the latter 
system by finite element methods. Once the state variables u and p and the 
Lagrange multipliers ; and a, or rather, approximations to these, are found, 
the optimal controls may be easily computed from the optimality conditions 
(3.18) and (3.19), i.e., we essentially have that gd = -; and gb = -vIr 

Integrations by parts may be used to show that the system (2.2), (3.16), (3.17), 
and (3.20) constitutes a weak formulation of the problem 

(3.21) -vdiv((gradu)+(gradu)T)+u*gradu+gradp=f- in.Q, 
(3.22) divu=0 inQ, 

(3.23) -pn + v((gradu) + (gradu) *) nn+vau=h- onlr, 

(3.24) - v div((grad ) + (grad) T) + . * (gradu)T 

- u2 grad; + grad a = (u - u)3 in Q, 

(3.25) div; = 0 in Q, 

and 

(3.26) -an + v((grad ) + (grad )T) *n + vac = -(u*n)s on F. 
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Note that in (3.24) 

d a d au. 
(u -grad?)i = uj9i, (4 (grad U)T)i =E , ifor i = l,.. d. 

j=1 j=1 

The optimality system (3.21)-(3.26) consists of the Navier-Stokes system 
(3.21)-(3.23) and the system (3.24)-(3.26) whose left-hand side is the adjoint 
of the Navier-Stokes operator linearized about (u, p) . 

Remark. Our notion of an optimal solution is a local one; see (2.5). Moreover, 
there is no reason to believe that, in general, optimal solutions are unique. This 
is to be expected, since the uncontrolled stationary Navier-Stokes equations are 
known to have multiple solutions for sufficiently large values of the Reynolds 
number. However, just as in the Navier-Stokes case [6, 7, 14, 15], for sufficiently 
small values of the Reynolds number, i.e., for "small enough" data or "large 
enough" viscosity, one can guarantee that optimal solutions are unique. 

3.3. Regularity of solutions of the optimality system. We now examine the reg- 
ularity of solutions of the optimality system (2.2), (3.16), (3.17), and (3.20), or 
equivalently, (3.21)-(3.26). 

Theorem 3.2. Suppose the given data satisfies h E H112(r), f E L2(Q), and 
u0 E L6(Q). Supposethat Q isofclass C' . Then, if (u, p, 5, v) E H1(Q) x 
L2 (Q) x H2 (Q) x L (Q) denotes a solution of the optimality system (2.2), (3.16), 
(3.17), and (3.20), or equivalently, (3.21)- (3.26), we have that (u, p , , a) E 
H 2(Q) x H1(Q) x H 2(Q) x H 1(Q). 

Proof. Since s E H1(Q), we have that E E H/22(F), and s E L2(Q). Then, 
using the hypotheses, the right-hand side of (3.21) belongs to L 2(Q) and the 
right-hand side of (3.23) belongs to H1/2 (F). Then, the additional regularity 
of u and p follow from well-known theories concerning the Navier-Stokes 
equations (see [6, 14]). 

Now, since u E H2(Q) and s E H1(Q), we have that s. (gradu)T and 
u gradef belong to L2 (). Moreover, (u - u)3 certainly belongs to L2 (Q) as 
well, since (u - u0) E L 6(Q). Thus, if we rewrite (3.24) in the form 

- v div((grad?) + (grad e) T) + grad a 
(3.27) -. * (gradu)T + u * gradf + (u - u0)3 in Q, 

we have a right-hand side that belongs to L 2(Q). Moreover, we have that 

U1e H3/2(F) and s I, e H12(F). Then, since Q is of class C1 1, one may 
conclude that u * n E H1 (F) and that (u * n)s I, E L2(r), i.e., the right-hand side 
of (3.26) belongs to L2 (F). Then, well-known results for the Stokes problem 
applied to (3.25), (3.26), and (3.27) yield that E e H3/2(Q). With this new 
information, we can deduce that actually the right-hand side of (3.26) belongs 
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to H1/2(V) , so that again, results for the Stokes problem yield that { E H2 (Q) 
and a E H'(Q). 

2 Remark. The above result also holds for convex regions of R . In general, 
we may show that if f E Hm(Q), u0 E Wm 6(Q), h E Hm+1/2(F), and Q 
is sufficiently smooth, then (u, P, s, a) E Hm+2(Q) x Hm+l ((Q) x Hm+2 () x 
Hm+l (Q). In particular, if f, u0, and h are all of class CO7(Q)), and Q is of 
class C' , then u, p, s , and a are all C' ?(Q) functions as well. 

4. FINITE ELEMENT APPROXIMATIONS 

4.1. Finite element discretizations. A finite element discretization of the opti- 
mality system (2.2), (3.16), (3.17), and (3.20) is defined in the usual manner. 
First one chooses families of finite-dimensional subspaces Vh c H 1(Q) and 
Sh c L 2() . These families are parametrized by a parameter h that tends to 
zero; commonly, h is chosen to be some measure of the grid size. Here we may 
choose any pair of subspaces Vh and Sh that can be used for finding finite 
element approximations of solutions of the Navier-Stokes equations. Thus, we 
make the following standard assumptions, which are exactly those employed in 
well-known finite element methods for the Navier-Stokes equations. First, we 
have the approximation properties: there exist an integer k and a constant C, 
independent of h, v, and q, such that 

(4.1) inf I|v-v 11? < ChmIIVIIm+j Vv e H (Q), 1 < m < k, 
Vh EVh 

and 

(4.2) inf jj - q hno < Ch hljqjlm Vq eHm(Q), 1< m <k. 

Next, we assume the inf-sup condition, or Ladyzhenskaya-BabuSka-Brezzi con- 
dition: there exists a constant C, independent of h, such that 

b h 
h) 

(4.3) inf sup b(v q ) > C. 
O6qh EShO $Vh Evh |I VhI|1I | |hII0o 

This condition assures the stability of finite element discretizations of the 
Navier-Stokes equations. For thorough discussions of the approximation prop- 
erties (4.1)-(4.2), see, e.g., [4] and for like discussions of the stability condition 
(4.3), see, e.g., [6, 7]. These references may also be consulted for a catalogue of 
finite element subspaces that meet the requirements of (4.1)-(4.3). 

Once the approximating subspaces have been chosen, we seek uh E Vyh ph E 
Sh h E eV ,and ah ESh such that 

( h h) + C(Uh Uh Vh) + b(vh p ) + h(aU h v )r 
(4.4) hf~ hv)+(h- , V)r VVh VY 

(f- * ) + (h h _E 

(4.5) b(uh qh) = o Vqh E Sh 
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(4.6) 
v~a(co ,h h) + c(co , uh, {h) + C(Uh th h) + b( h h 

+ v(a h h) = ((uhU)3 wh) V(hE Vh 

and 

(h 5Vh = V h h 
(4.7) b(; ,/y)=0 E Sh 

where, as always, (uh - uO)3 denotes componentwise exponentiations. From 
a computational standpoint, this is a formidable system. In three dimensions, 
we have a coupled system of eight nonlinear equations involving eight unknown 
discrete scalar fields. Therefore, how one solves this system is a rather important 
question. However, in this paper we concern ourselves only with questions about 
the accuracy of finite element approximations; questions about efficient solution 
methods and implementation techniques, as well as computational examples, 
will be addressed in another paper. 

4.2. Quotation of some results concerning the approximation of a class of nonlin- 
ear problems. The error estimates to be derived in ?4.3 make use of results of 
[3] and [5] (see also [6]) concerning the approximation of a class of nonlinear 
problems. Here, for the sake of completeness, we will state the relevant results, 
specialized to our needs. The nonlinear problems to be considered are of the 
type 

(4.8) F(A, a () =_ (p + TG(A5 (p) = O. 

where T E Y(Y; X), G is a C2 mapping from A x X into Y. X and Y 
are Banach spaces, and A is a compact interval of IR. We say that { (A . (A)): 
A E A} is a branch of solutions of (4.8) if A -* (sA) is a continuous function 
from A into X such that F(, (A()) = 0. The branch is called a nonsingular 
branch if we also have that D(PF, (A()) is an isomorphism from X into X 
for all A E A. Here, D,(P denotes the Frechet derivative with respect to (o. 

Approximations are defined by introducing a subspace Xh c X and an ap- 
proximating operator Th E Y(Y; Xh) . Then, we seek ( h E Xh such that 

h(A h) = h h h 
(4.9) F Pi -h 

P 
f + T G(A5 (P 0. 

We will assume that there exists another Banach space Z, contained in Y, 
with continuous imbedding, such that 

(4.10) D9G(Aq()EY(X;Z) VA eAand(PeX. 

Concerning the operator T h, we assume the approximation properties 
h 

(4.11) limHII(T -T)rlxH=0 VrE Y 

and 

(4.12) lim II(Th - T)K I(z;x) = 0. 
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Note that (4.12) follows from (4.1 1) whenever the imbedding Z c Y is com- 
pact. 

We now may state the first result that will be used in the sequel. In the state- 
ment of the theorem, D 2G represents any and all second Frdchet derivatives 
of G. 

Theorem 4.1. Let X and Y be Banach spaces and A a compact subset of 
R. Assume that G is a C2 mapping from A x X into Y and that D 2G is 
bounded on all bounded sets of A x X. Assume that (4.10)-(4.12) hold and 
that {(f (A()); A E A} is a branch of nonsingular solutions of (4.8). Then there 
exists a neighborhood & of the origin in X and, for h < ho small enough, a 
unique C2 function A , (oh(A) E Xh such that {(R. o h(A)); A E A} is a branch 
of nonsingular solutions of (4.9) and h (A) - (sA) E & for all A E A. Moreover, 
there exists a constant C > 0, independent of h and A, such that 

I(h(A h 
(4.13) || P~)(A)|| < CII(T - T)G(A5 (p())llx VA A 

For the second result, we have to introduce two other Banach spaces H and 
W, such that W c X c H, with continuous imbeddings, and assume that 

for all w E W, the operator D, G(A, w) may be extended as 
(4.14) a linear operator of Y(H; Y), the mapping w -* D9,G(, w) 

being continuous from W into Y(H; Y). 

We also suppose that 

(4.15) lim HIT -T1H O = 

Then we may state the following additional result. 

Theorem 4.2. Assume the hypotheses of Theorem 4.1 and also assume that (4.14) 
and (4.15) hold. Assume in addition that 

(4.16) for each A E A, ( A) E W and the function A -* (A) is 
continuous from A into W 

and 

(4.17) for each A E A, 5D (P ( (A)) is an isomorphism of H. 

Then, for h < h1 sufficiently small, there exists a constant C, independent of h 
and A, such that 

I(h(A h I(h(A 
(418 ( 9f(41H | < C|I|( T -T) G(A5 

P 
(A) ) 12 VA + A. 2) ( 

4.3. Error estimates. We begin by recasting the optimality system (2.2), (3.16), 
(3.17), and (3.20) and its discretization (4.4)-(4.7) into a form that fits into 
the framework of ?4.2. Let A = 1 /v; thus, if our governing system has been 
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nondimensionalized, A is the Reynolds number. Let 

X =H I(Q) x L 2(Q) x H'(Q) x L 2(Q), 

Y = (H (Q))* x H- /2(F) x (H'(Q))* 

Z =L32(Q) x L2(F) xL3/2Q 

xh vh X 5h X Vh X 5h 

where (H1 (Q))* denotes the dual space of H1 (Q). Note that Z c Y with a 
compact imbedding. 

Let the operator T E Y(Y; X) be defined in the following manner: 
T(;,5 0, r) = (u, p, , o) for (',0,q) E Y and (u, P. ) E X, if and 
only if 

(4.19) a(u, v) + b(v, p) + (agu, v)r = (;, v) + (O, V~r klV E H2(Q), 

(4.20) b(u,q)=O VqEL (Q), 

(4.21) a(co , ) + b(co a) + (aco , ()r = co, ) VCO E H1 (Q), 

and 

(4.22) b(o, y/) =O V yi E L2(Q). 

Clearly, (4.19)-(4.22) consist of two uncoupled Stokes problems and T is their 
solution operator. 

Analogously, the operator T e Sf(Y; X) is defined as follows: Th (:, 0, '1) 

=(uh p h~,h s ,a ) for (4,O , ) E Y and (u ph ,h ,ah) E Xh ,if and only 
if 

(4.23) a(u ,v )+ b(v, p ) + (auh ,vh)=( v) + (O, ) VVh eV 

(4.24) b(uh, qh) =0 Vqh ES5 

(4.25) va(w ,h ) + b(w ,a C ) + (ac u )r= (h ) Vw E V 

and 

(4.26) b({A yh = o Azh E SAh 

Clearly, (4.23)-(4.26) consist of two discrete Stokes problems that are discretiza- 
tions of the Stokes problems (4.19)-(4.22); also, T h is the solution operator 
for these two discrete Stokes problems. 

Let A denote a compact subset of R+. Next, we define the nonlinear map- 
ping G: AxX - Y asfollows: G(A,(u,p, ,a))=( ,,q) for AEeA, 
(u,p, f, a) eX, and (;, 0, i) E Y, if and only if 
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and 

(4.29) (w) = Ac(w, u, ) + Ac(u, c, A((u - uo) 3 so) VW EH1 ((Q). 

It is easily seen that the optimality system (2.2), (3.16), (3.17), and (3.20) is 
equivalent to 

(4.30) (u, Ap, A, Au) + TG(A, (u, Ap, A, Au)) = 0, 

and that the discrete optimality system (4.4)-(4.7) is equivalent to 

(4.31) (uh,) AP, 
h 

) + TG(A, (uh, Ap, ,)h i Ah )) = . 

We have thus recast our continuous and discrete optimality problems into a 
form that enables us to apply Theorems 4.1 and 4.2. 

A solution (u(9), p(A), s(A), :(A)) of the problem (2.2), (3.16), (3.17), and 
(3.20), or equivalently, of (4.30), is nonsingular if the linear system 

a(fi, v) + Ac(id, u, v) + Ac(u, ui, v) + Ab(v, j3) + (afi, v)r + A( , v)4 + A(), v) 

= (, v) + (h, v), IVv E H (Q), 

b(fi, q) = aq) Vq E L 2(2), 

a(cw, {)+ Ac(w, f, {) + Ac(w , u, {)+ Ac(u, co, {)+ Ac(d, w, {)+ Ab(wo a) 

+ (as=, 2)r, - 3A((u - uo)2 * u, () = W ) VW E H1K2 

and 
b({, a ) = /i ) 1VV E L-2(Q2) 

has a unique solution (fit, E, , &) E X for every f, liE (H (Q))*, E ftE 
2 2 L (Q), and h E L (F). In the above equations we have used the notation 

(u - u0)2 u to denote a vector having components given by (u - uo)2(u)j 
j = 1, ... , d, where there is no implied summation. 

An analogous definition holds for nonsingular solutions of the discrete opti- 
mality system (4.4)-(4.7), or equivalently, (4.31). We will assume throughout 
that the optimality system (2.2), (3.16), (3.17), and (3.20), or equivalently, 
(4.30), has a branch of nonsingular solutions for A belonging to a compact 
interval of R+. 

Remark. It can be shown, using techniques similar to those employed for the 
Navier-Stokes equations (see [15] and the references cited therein) that for al- 
most all values of the Reynolds number, i.e., for almost all data and values 
of the viscosity v, the optimality system (2.2), (3.16), (3.17), and (3.20), or 
equivalently, (4.30), is nonsingular, i.e., has locally unique solutions. Thus, it 
is reasonable to assume that the optimality system has branches of nonsingular 
solutions. (However, we note that, just as in the Navier-Stokes case, it is im- 
possible to predict, except in very simple settings, exactly at what values of the 
Reynolds number singularities, e.g., bifurcations, appear.) 

Using Theorem 4. 1, we are led to the following error estimate. 
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Theorem 4.3. Assume that A is a compact interval of R+ and that there exists 
a branch {(A, (p) = (u, p, ,, a)): A E A} of nonsingular solutions of the 
optimality system (2.2), (3.16), (3.17), and (3.20). Assume that the finite ele- 
ment spaces Vh and Sh satisfy the conditions (4.1)-(4.3). Then, there exists a 
neighborhood & of the origin in X = H (Q) x L2(Q) x H1 (Q) x L 2(Q) and, for 
h < h small enough, a unique branch {I(, 9) 

h 
=(u p P, ph )):Ah eA} of 

solutions of the discrete optimality system (4.4)-(4.7) such that f h (A) _(A) E E 

for all A E A. Moreover, 

(4.32) 119h(A) - (P)4IX = ||U(A) - Uh(;A)lI + IIP(,.) _Ph(.)IlI 

+ ll(A)_ -;h(A)Ijj + 11a(A) - Ch (A)IIlo -? 0 

as h -O0, uniformly in A E A. 
If, in addition, the solution of the optimality system satisfies (u(A), p(A), (A), 

T(A)) E Hm+l(Q) x Hm(Q) x Hm+l(Q) x Hm(Q) for Al E A, then there exists a 
constant C, independent of h, such that 

(4.33) I j() - U (A)II1 + IP(A) - ph (A)II + Ij (A) _ h (A)II 1+ I I haQ() _ a (4)I 
< Chm(IIU(A)IIm+j + IIP'()IIm + II{(A)lIm+1 + IIaC()lIm) 

uniformly in E A. 
Proof. Clearly, we may write G = AG(u, s), where G is a C? polynomial 
map from X into Y. Therefore, using (1.8), D G(u, {) is easily shown to 
be bounded on all bounded sets of X. Now, given (u, p, U, a) E X, a direct 
computation yields that (;, 0, #) E Y satisfies 

(t, 5 , #) =D G(A, (u, p, {, a))(v, q, co, V) 

for (v, q, t, V) E X, if andonlyif 

A; - C(U, v, ~v) + AC(V, u, v-) + (W, v-) VV E H1 Q, 

(0 ~r A~o, rW E H1Q, 

and 

(#, ) = Ac(ZU , ) + Ac(aiu, W) + Ac(v, ,{ + Ac(u ,t , (a) 

- 3A(u - u )2. v, j) C0 E HIQ. 
22 

where again (u - uo)2 v denotes the vector having a jth component given by 

(u - u0)2(v)j, with no implied summation. Thus, for given (u, p, {, a) E X, it 
follows from (1.8) that Dq G(A, (u, p, ;, a)) E ?(X; Y) . On the other hand, 
since (u, p, s, a) E X and (v, q, co, V/) E X, by the Sobolev imbedding 
theorem, u, v, s fl, and CO E L6(Q); &u/&x1, aV/&Xj, &;/&Xj , and w/&x1j E 

L2(Q) for j= 1,..., d;and coreL (F). Then,itfollowsthat (, 0, i#) EZ 

and that, for (u, p, {, a) E X, Dq G(A, (u, p, {, a)) E ?(X; Z) . Of course, 
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Z is continuously imbedded into Y; moreover, the imbedding Z c Y is 
compact. 

h Next, we turn to the approximation properties of the operator T . By ex- 
tending well-known results for the Stokes problem with Dirichlet boundary con- 
ditions (see, e.g., [6]), one can show, provided that (4.1)-(4.3) hold, that if 

(-, P-, a, ) and (' 1h 5,h 5 
, 

h) are solutions of (4.19)-(4.22) and (4.23)- 
(4.26), respectively, then 

lu-u 11, + I P _ IlO + I _ I + I5 _hI lo --+o, 
so that (4.11), and therefore (4.32), hold. Since the imbedding of Z into 
Y is compact, (4.12) follows from (4.11). We also have the following results 
concerning the approximation of the Stokes problem. Suppose (u, p, s, a) = 
-TG(Q, (u, p, A, a)) satisfies (u, p,, a) E H+ (Q) x Hm (Q) x H+ (Q) x 
Hm(Q). Then, there exists a constant C, independent of h, such that 

lIU-Ul111 + IT + 11 _ + hi4 l + l5_ llO 
< Chm(llUIIm+ + lirpim + 11llm+j + l1allm), 

i.e., in our notation we have that 

II(T- Th)G(, (#())Ilx < Chm(IIUIIm+j + ilPlim + IIf11m+i + a1l1m). 

Then (4.33) follows from (4.13). 0 

Using Theorem 4.2, we now derive an estimate for the error of uh and h 

in the L 2(Q)-norm. At this point it is convenient to examine (4.27)-(4.29) and 
note that G(A, (u, p, s, a)) does not depend on p or a. Therefore, we now 
define X =H (Q) x H1 ()I Y = (Hl (Q))* x (H1 (Q))*, Z = L 3 (Q) x L32(), 
and Xh = Vh xVh and restrict our view of the various mappings to these spaces. 
We introduce the spaces H = L 2(Q) x L 2(Q) and W = H 2(Q) x H 2(Q). 

Theorem 4.4. Assume the hypotheses of Theorems 3.2 and 4.3. Then, for h < h1 
sufficiently small, there exists a constant C, independent of h, such that 

(4.34) I IU(A) - U (A) I lo + I |;(i) _ a* (A) I |0 

< C M+1 (IIU(4)IM+1 + IIP(4)IM + 11{(A)IIM+i + IHa(41)iM 
Proof. We need only verify that (4.14)-(4.17) hold in our setting; then, well- 
known results [6] concerning L 2(Q)-norm estimates for the velocity approxi- 
mations in the Stokes equations setting and the results (4.18) and (4.33) easily 
lead to (4.34). 

From Theorem 3.2 we have that u, E H 2(Q); then one can easily show 
that 

(4.35) jc(u, v, v) + c(v, u, ;V)I 
< 

CIgu112Ijvjj01jvjII 1 

Vue H (Q), ve H0Q vH (Q) 
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and 

Ic(i, v, {) + c(CO, u, co) + c(v, , )+ c(u , co co) 

(4.36) < C(Q uIj21 wOj0 + I1 II121 IvII0)HI1"I 

Vu { E H 2(2), v CO E H' (Q) v- Z E H1U. 

Then, we have that for (u, A) E W, (v, co) -* D ,G(Z, (u, {))(v, c) belongs 

to Y(H (Q) x H (Q), Y), where Ho(Q) x H (Q) is considered as a dense 
subspace of H. Then we may uniquely extend D ,G(A, (u, A)) as an operator 
in Y(H, Y) . The continuity of the mapping D G(i, (,)) E Y(W, Y (H, Y)) 
is an easy consequence of (4.35) and (4.36). Thus we have verified (4.14). Next, 
(4.15) follows from (4.1 1) and the fact that X is compactly imbedded into H. 
The results of ?3.3 and the fact that A belongs to A, a compact interval of 
R+, easily yield (4.16), where (os) = (u(A), s(A)). Finally, (4.17) follows from 
the well-known properties of the solution operator for the Stokes problem, the 
continuity of the mapping D ,G(A, (u, c)), and the fact that we have assumed 
that (u(A), {(A)), A E A, defines a nonsingular branch of solutions. 0 

A consequence of Theorems 4.3 and 4.4 is the following corollary that gives 
estimates for the error in the approximation of the controls. 

Corollary 4.5. Define the approximate controls by 

(4.37) ~~~~h hh h 
(4.37) =gd =- and 9b =-_ Ir 

and assume the hypotheses of Theorem 4.3. Then, for h < ho sufficiently small, 
there exists a constant C, independent of h, such that 

(4.38) | I-gdI l < Chm(IIu())IIm+I + IIP(A)IIm + lIl(i)lIm+1 + Ik'(A)Ilm) 

and 

(4.39) IIgb - gbllI/2,r < Chm(IIU(A)IIm+I + IIP(A)IIm + II(A)JIm+1 + Ia(2)Im) 

If in addition the hypotheses of Theorem 4.4 hold, then, for h < h, sufficiently 
small, there exists a constant C, independent of h, such that 

(4.40) II-gdIIh < Chm+ (IIu(A)IIm+i + IIP(A)IIm + 1IIt(A)JIm+1 + Il(A)Ilm) 

and 

(4.41) Igh -gbIIo < Ch 12(IIU(a)IIm+i + IIP(A)IIm + jIj(A)IIm+i + If(A)IIm). 
Proof. Recall that gd = -; and gb =-;- (see (3.18) and (3.19)). Then (4.38) 
and (4.40) easily follow from (4.33) and (4.34), respectively; (4.39) follows from 
(4.33) and the trace theorem (see [1]), i.e., IIb -gbh 1/2f ? h III . Finally, 

(4.41) follows from (4.33), (4.34) and the well-known inequality IIhb -gbIIO 1h 

C[8Il; -sII1(l+18)Ill; -{ll],with the choice e = h "2. 01 



ANALYSIS OF OPTIMAL CONTROL PROBLEMS 143 

5. THE DRAG FUNCTIONAL, PARTIAL CONTROLS, AND DISTRIBUTED CONTROLS 

We now consider four variations on the problem considered in ??2-4. A 
substantial portion of the analyses and results of those sections that apply to 
the case that uses the functional (2.3) with distributed and Neumann controls 
will also apply to the variations considered in this section. Therefore, here we 
will merely point out the differences. Details about all the topics considered in 
this section may be found in [ 11]. 

5.1. Optimizing the drag functional. Consider flow control problems wherein 
the functional (1.5) involving the viscous drag dissipation is to be minimized, 
subject, of course, to the Navier-Stokes equations (1.1 )-(1.3) as constraints. 
Using the notation of ? 1, we rewrite (1.5) as 

(.1 a bb d a(u , u) - J, u) + >2 (au,5 u)r, + 12 rl,11 + l 
1 
12 

The admissibility set is now defined by 

ad =(U5 gb gd) E H I()x L 2(r)x L(Q):(Ugbgd)< 

and there exists a p E L 2(Q) such that (2. 1) and (2.2) are satisfied}. 

The optimization problem at hand is to minimize (5. 1) over ad . The exis- 
tence of optimal solutions may be shown as in Theorem 2.1; this task is some- 
what easier in the present context, since the fact that X(u(n), g n), 5bn)) is 
bounded for (u 5 gb gd)) E Fad immediately yields that u is bounded. 
Also, Theorem 3.1 on the existence of Lagrange multipliers is easily amended to 
apply to the context of this section. An optimality system, which may be derived 
using the method of Lagrange multipliers, is given by (2.1)-(2.2), (3.17)-(3.19), 
and, instead of (3.16), 

(5.2) va(co , {) + c(co , u , {) + c(u , to,) + b(co, C ) + v(aeco, ) 

= va(u, c) + v(au, w)r - (f, w) V E H1 Q. 

We may substitute (2.1) in the right-hand side of (5.2) to yield 

(5.3) va(co, {) + c(co, u, u ) + c(u, to, 5) + b(co, a) + v(aco,5 )r 1 

=-b(cw , p)-c(u, u, co) + (gd, wt) + (h + gb ' to)r VCO E H (Q). 

Using the optimality conditions (3.18) and (3.19), we can eliminate the controls 
from (2.1) and (5.3) to yield (3.20) and 

va(co, {) + c(co, u, {) + c(u , t ) + b(co, 6) + v(aco, {)r 

= -c(uuwc)-(swc)+(h- cw)r, Vw0EH1 (Q), 

where a = a + p. In the sequel we will dispense with the (t) notation. Thus, 
the optimality system for the problem of minimizing (5. 1) over Yad is given, in 
a form not explicitly involving the controls, by (2.2), (3.17), (3.20), and (5.4). 
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By integration by parts one easily finds that the optimality system is a weak 
formulation of the following system of partial differential equations and bound- 
ary conditions: 

-v div((gradu) + (gradu) T)+u*gradu+gradp=f- inQ, 
divu=O inKQ, 

-pn + v ((grad u) + (grad u) T) *n+vau=h- on F, 

(5.5) - v div((grad ) + (grad) ) +T . (gradu) - u* grad f + grada 

=-s-u*gradu inKQ, 

div$=O inKQ, 

and 

-an + v ((grad s) + (grad e) T) *n+va = h - (u*n)f on F. 

Existence and regularity results for this optimality system may be derived in the 
same manner as that employed in ??3.1 and 3.3. Finite element approximations 
are defined exactly as in ?4.1. 

We again want to apply the results of ?4.2. We define the spaces X and Xh 
as in ?4.3. However, we now define 

Y =(H1(Q)) x H-(F/2() x (H1(Q))* x H-/F) 

Z L 3/2 (L) x L2 (r) x L3/2 (L) x L2(r). 

Also, the operator T E S(Y; X) is now defined in the following manner: 
T(4 5, O, q6) = (u, p, , a) for(, 0, ,) E Y ,and (u, p, P ,) E X, if 
and only if 

a(u, v) +b(v, p) + (auv)r = (OCv) +(0,v)r VV EH1(Q)5 

b(u,q)=O VqeL2(Q), 

a~c, ) bc4,) (eC, {r (lC4)+ d C)rVCO EH (Q), 

and 
b(s ,y ) = O V E L2(Q). 

The definition of the operator Th is changed from that given by (4.23)- 
(4.26) in an analogous manner. The mapping G is now defined as follows: 
G (A , (u , p 5 a)) = (4, 0, q, 6) for A E A, (up, 5 ,a ) E X, and 
(,0 , q, 6) E Y, if and only if 

(,6 v)=C(U, u v)-A(f-,v) VVE He(H)) 

(5.6) (O 5 W)r, = A(sffl W)r, VW E H1 (LI) 
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and 
(6, X)r,= -A(h - =, X)r VX E Hi (Q). 

With these changes in definitions, Theorems 4.3 and 4.4 and Corollary 4.5 
can be shown to be applicable to the case of the optimization of the functional 
(5.1). 

The main effect of the substitution of (2.1) into the right-hand side of (5.2) 
is to replace va(u, w) - (f, w) in favor of the form -c(u, u, w), i.e., to have, 
in the right-hand side of (5.5), - (u * grad u) plus some additional benign terms 
instead of -v div((grad u) + (grad u)T) - f. This replacement is necessary in 
order to validate the analyses of ?4.2 for the present case. 

Let us see what would happen if we did not substitute (2.1). The definition 
of the mapping G would then have 

(5.7) 
(X7 w) = Ac(w, u, ;) + Ac(u, co, {) + Aa(u, co) + A(atu, co), 

Vw E H (Q), 

replacing (5.6). In this case, one cannot show that the mapping G, which is 
defined as a mapping from A x X into Y, actually maps A x X into Z c Y, 
with a compact imbedding. To see this, note that the right-hand side of (5.6) 
becomes, if one uses (5.7), 

-v div((grad u) + (gradU) ) 

and, for u E H (Q), this right-hand side is merely in (H (Q))*, and thus q 
computed by using the mapping G will only belong to (H1 (Q))*, i.e., G does 
not map A x X into Z, where Z is compactly imbedded into Y. 

5.2. Optimizing with distributed controls with specified boundary data. Consider 
the problem of minimizing either of the functionals 

(5.8) fr(u, gd) = 4 1 IU-IU0 IL4(Q) + 2 1 IgdI Io 

or 

(5.9) v~,gd a(u, u) - J, u) + ldl, 

where (u, p, gd) are constrained to satisfy the Navier-Stokes equations 

(5.10) va(u, v) + c(u, u, v) + b(v, p) = (f + gdIv) Vv E H'(Q) 

and 

(5.11) b(u,q)=0 VqeL 2(Q) 

and boundary condition 

(5.12) u=h onFwithjh ndF=O, 

where 
HI(Q)={veH1(Q): v=Oon F} 
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and 

L2(Q)= {q E L2(Q):f qd2 = O}. 

The system (5.10)-(5.12) is a weak formulation of the problem 

-v div((gradu) + (gradu) )+ u gradu + gradp = f + gd in Q, 
div u = 0 in Q, 

and 
u=h onFwithjh ndf=0. 

Thus, our only control is of the distributed type and our boundary data is the 
specification of the velocity field. If the given data satisfies 

h E H'2(r) = {g E H1 /2(r):j h ndr = 0} 
2~~~~ 

and f E L 2(), we can proceed to show the existence of optimal solutions for 
either of the functionals (5.8) or (5.9). The control gd may be chosen from 
L 24) . 

With some changes, the approach of ?3.1 for showing that Lagrange multi- 
pliers exist can be used in the present context. Specifically, we now define the 
spaces B1 = H1 (Q) x L 2 (Q) x L2(Q) and B2 = (Ho(Q))* x Lo(Q) x H1/2(r) ; the 
nonlinear mapping M: B1 -* B2 is now defined as follows: M(u, P gd ) = 

(f, (oh) for (u,p, gd) eB1 and (f, , h) eB2, if andonly if 

va(u, v) + c(u, u, v) + b(v, p) - (gd v) = (f, v) Vv E H 

b(u, q) = (p, q) Vq E L 2f, 

and 
u=h onFwithjh ndf=0. 

Similarly, the operator M'(', P. gd) E Y(B1; B2) is now defined as follows: 
M'(ui pi gd)*(w, r, sd) Sd) E B1 and (f, , h) e B2, if 
and only if 

va(w, v) + c(w, ui, v) + c(ui, w, v) + b(v, r) - (sd, v) = (f, v) Vv E Ho(Q) 

b(w, q) = q(P ) Vq E L 2(K2) 

and 
w=h on r with h ndr = O. 

To show that the operator M'(uI, p3, Id) from B1 into B2 is onto, first note 
that there exists (see [6]) (w, r) E H1(Q) x L 2(Q) such that 

va(w, v) + b(v, r) + c(ui, w, v) = (f, v) Vv E H ) 
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and 
w=h on F with h*ndF = 0. 

Then, there is no difficulty in finding Sd E L2(Q) such that 

(Sd, v) = C(W, U', v) VV E Ho (Q). 

Indeed, we merely set Sd = w-grad ui, so that, since w E H1 (Q) and ui E H3/2(Q) 

(see Remark 2 at the end of ?2), we have that sd E L 2(Q), and the last equation 
is satisfied. Collecting the defining relations for w, r, and Sd implies that the 
operator M'(fi, i , Ad) from B1 into B2 is onto. The remainder of the proof 
of the existence of Lagrange multipliers proceeds in a similar manner to the 
proof of Theorem 3.1. 

The optimality system for the problem of minimizing (5.8) subject to (5.10)- 
(5.12) is given by 

(5.13) -v div((grad u) + (grad U)T) +u*gradu+gradp=f-; inQ, 
(5.14) divu=0 inQ, 

(5.15) u = h on r, 

(5.16) - v div((grad =) + (grade)T) - u - grad; +. (gradu)T + grada 

=(u-uO)3 inQ 

(5.17) div$ = O in Q, 

and 

(5.18) s=O onF. 

If instead we minimize (5.9), the optimality system is given by these same 
equations except that (5.16) is replaced by 

(5.19) - v div((grad =) + (grad )T) - u - grade + * (grad u)T + grad a 

= -sY-u *gradu in Q. 

As always, the control may be determined from the condition gd = -; in Q. 
Regularity results for solutions of these optimality systems may be proved ex- 

actly as in ?? 3.3 and 5.1, provided, of course, that f and h have the appropriate 
smoothness. Likewise, finite element error estimates may be obtained as in ?4, 
and the results of these sections apply to the cases in hand. The only changes 
are that the velocity test space is now HI(Q) and the velocity trial set must be 
constrained so that (5.12) is satisfied; also, the pressure is now determined only 
up to an additive constant so that, e.g., we should constrain the pressure space 
so that its members have zero mean over Q. Thus, the velocity finite element 
test space must be chosen to be a subspace of H (Q), and the velocity finite 
element trial set must be constrained so that some approximation to the bound- 
ary condition (5.12) is satisfied. Likewise, the pressure finite element test and 



148 M. D. GUNZBURGER, L. HOU, AND T. P. SVOBODNY 

trial functions are constrained to have zero mean over Q. This does not pose 
any theoretical or practical difficulties, since such procedures are well known in 
the context of Navier-Stokes calculations (see [6, 7]). 

One may also consider the case of a distributed control acting in concert with 
specified Neumann data. Here new difficulties are encountered in showing the 
existence of Lagrange multipliers. In fact, we can no longer use the L 2(Q)-norm 
of gd in the definition of the functionals (5.8) and (5.9); we must employ a 
weaker norm. For example, if we use 

1gdI |L4/3Q instead of 2 |1gd1 | 

in (5.8) or (5.9), then we may show that suitable Lagrange multipliers exist. In 
the optimality system, the relation between the control gd and the Lagrange 
multiplier s changes to gd = - f3, where the notation S 3 denotes component- 
wise exponentiation. The differential equations in the optimality system are 
analogously changed. For example, in (5.13) we would replace the term s on 
the right-hand side with S . Of course, the boundary conditions (5.15) and 
(5.18) are changed to Neumann conditions. The error estimates of Theorems 
4.4 and 4.5 are still valid; however, for the approximate control gh = -fh 3 

we can only show that Igd - gdh o = 0(hm) . See [ 1 1 ] for details. 

5.3. Distributed controls acting on only part of the flow domain. We now turn to 
the case where the distributed control acts on only a subset of the flow domain 
Q. We separate this case from that of the Neumann control acting on only part 
of the boundary owing to the fact that in these cases we do not always achieve 
the same results as we have obtained so far. The results that we are about to 
present apply equally well to all three settings that have been treated above, i.e., 
that of ??2-4, of ?5.1, or of ?5.2. However, for the sake of simplicity, we will 
present them in the setting of ?5.2. 

Let w be an open set of Q whose closure is strictly contained in Q. Con- 
sider the functionals f(u, gd) and %(u, gd) defined in ?5.2 and the sets 

gad= {(U, gd) E H1(LI) x L. (Q):f(u, gd) < oc, and there exists 
ap E Lo(Q) such that (5.10)-(5.12) are satisfied} 

and 

ad= {(U. gd) E H (Q) x Lo(Q) x L. (Q): (u, gd) < 0o, and there exists 

ap E Lo(Q) such that (5.10)-(5.12) are satisfied}, 

where 
L 2(Q) = {v E L2(Q): v = 0 in Q\w}. 

Now consider the problem of minimizing f(, *) over /ad. The existence 
of optimal solutions can be shown in the same manner as was used in ?2. Using 
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Lagrange multipliers, one may derive the optimality system (5.13)-(5.18), with 
(5.13) replaced by 

(5.20) -v div((gradu) + (gradu) )+u*gradu+gradp=f- inQ, 

where 
- flin@t, 

0 inQ\w. 
The control is given by gd = -s in to. 

For the problem of minimizing Z(, .) over %ad the optimality system is 
given by (5.14), (5.15), (5.17), (5.18), (5.20), and 

- v div((grad ) + (grad) T) - u * grade + s. (gradu) + grad a 

=-s-u*gradu in Q. 

The proof of Theorem 3.1 showing the existence of Lagrange multipliers cannot 
be extended to the present case. The difficulty arises in showing that an sd ex- 
ists satisfying (3.6), since now sd vanishes outside co. However, using methods 
similar to those used in [9], one can show that indeed nonzero Lagrange multi- 
pliers exist. We also have to worry about a loss of regularity owing to the fact 
that the control gd cannot be any smoother than an Hl/2 e(Q)-function. Thus, 
one can in general only show that, regardless of how smooth is the domain or 
the data, u E H5/2-8(Q) p E H3/2-e(Qj) 5f E H5/2->(Q) and a 3/2e (Q) 
where e E (0, 1/2) is arbitrary. As a result, the best finite element error esti- 
mate that can be obtained, using, for example, piecewise polynomials of degree 
two or higher for the velocity, and linear polynomials for the pressure, is 

I uA h () 11 I + h (A) _ ph (A) I 10 + I |;(i)-_ ; (A) I I I + I ja(A) 
_ 

h(4 

= h(h3h2- ) 

It is possible, by using special techniques that explicitly take into account the 
boundary of the subdomain cl in the definition of the method, that this estimate 
can be improved. 

5.4. Neumann controls acting on only part of the boundary. The final variation 
we consider is having the boundary control (1.3) acting on only part of the 
boundary F. For simplicity we assume that this is the only control acting on 
the problem; all we have to say holds equally well if there is also available a 
distributed control. 

We divide F into two parts, rO and IF, such that FOUrc = F and FOnl F= 
0. Then our minimization problems will require the minimization of either of 
the functionals 

(5.21) f(u, gd) = 4u uOL4() + 2lgbllrc 

or 

(5.22) =a(u, u) + (au, u)r - (, u) + 2 
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where 11gbl I12 has the obvious definition. Candidate minimizers are required 
to satisfy 

(5.23) -v div((gradu) + (gradu)T) )+u.gradu+gradp =f in Q, 
(5.24) divu=O inQ, 

(5.25) -pn+v(gradu+gradu ).n+vau=h+gb on J7, 

and 

(5.26) -pn + v(gradu + graduT) n+ vau = h onI'O 

where, as always, f, h, and uO are given functions in appropriate function 
spaces. The control is to be chosen from L2(r) . 

The existence of optimal solutions can be shown as in ?2. Using Lagrange 
multipliers, one easily derives an optimality system. For the minimization of 
the functional (5.21), this optimality system is given by 

-v div((grads) + (gradY) T) - u * grad; +. (gradu)T + grad a 

(5.27) =(u-u0)3 in Q, 
div; = O in n, 

(5.28) -an + v(grad; + gradeT) *n+va; = -(u*n); on F 

and (5.23)-(5.26), where in (5.25) we may eliminate the control gb through 
the use of the relation gb = -vIr . For the minimization of the functional 
(5.22), we obtain the same optimality system except that (5.27) and (5.28) are 
respectively replaced by 

- v div((grad ) + (grad )T) - u * grad + *(gradu)T + grada 

=-u * gradu in Q 

and 

-an + v(grad- + grad(T) *n+va = -(u*n)?+h- onr, 

where 
on F C, 

-10 onEO. 
If the boundary segments O and FC are disjoint, e.g., they are the separate 

parts of the boundary of a doubly connected region, then there is no difficulty 
in extending the existence, regularity, and approximation results of ??3 and 4 to 
the present setting, again with the exception that Theorem 3.1 must be proved 
by the methods of [9]. However, if these boundary segments are not disjoint, we 
have to worry about a loss of regularity at the interfaces adjoining the boundary 
segments. In fact, one can in general only show that, regardless of how smooth 
is the domain or the data, u E H 2- (), p E Hl (a) 5 E H 2- (), and 
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a E H 1- (Q), where e E (0, 1/2) is arbitrary. As a result, the best finite 
element error estimate that can be obtained is 

I U() - U (A)I I| + I IP(A () _ ph () + I Il + I (A) _ ah ()1I O(hI-e) 
We repeat that if the boundary segments ro and r, are disjoint, then we obtain 
the same type of estimates as in ?4. 
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